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Definitions 

Term Definition 

CLI Command line interface 

Continuous 
Integration  

automated process of running tests on every commit to the repository 

Demo Short for demonstration; this is one of the deliverables of the project: a 
demonstration of the quad’s capabilities, for example, doing a backflip 
with the quad, finding an object and following it, communicating with a 
second quad to perform flight patterns 

GPS Global Positioning System; space-based radionavigation system using 
satellites to determine position; proposed to find position (x, y) when 
not in the lab using the VRPN system 

Ground station The application that runs on a host computer that communicates with 
the quad via a Wi-Fi connection and sends it coordinates to the quad 

GUI Graphical user interface 

IR Infrared wavelengths of light longer than visible light; used in the VRPN 
system to determine the position of the quad 

LIDAR Light Detection and Ranging; this is a system for determining the 
altitude (z) of the quad using the onboard sensor 

Optical Flow system using pattern of motion of objects, surfaces, and edges caused by 
the relative motion between the and the scene to determine position; 
used by the quad to calculate position (x, y) when not in the lab using 
the VRPN system 

PID Proportional-integral-derivative control system; standard control 
algorithm used on the quad 

Quad Short for quadcopter; this is the hardware platform we use in this 
project 

Setpoint in a control system, the target value for an essential variable 

VRPN Virtual-Reality Peripheral Network; this is the system used to determine 
the position (x, y, z) and orientation (φ,θ,ψ) of the quad in the lab using 
a set of 12 stationary cameras and an IR transmitter on the quad 
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1 Introduction 
Microprocessor Controlled Aerial Robotics Team or MicroCART project is centered around the 
development of a quadcopter (see Figure 1 below) and tracking system. This project has been in 
development since 1998 and the current system has been passed down since 2006. The project aims 
to create a stable and easy to use platform for researching control theory. The quadcopter flies 
primarily in the Distributed Sensing and Decision Making Laboratory within a twelve camera 
infrared tracking system. 

 

Figure 1-1: MicroCART quadcopter 

1.1 ACKNOWLEDGEMENT 

MicroCART is a project that is assisted by graduate students working in controls under Dr. Nicola 
Elia and Dr. Phillip Jones. Additionally, as this is an ongoing project previous team members will 
also be providing help in understanding the current system. As such, we would like to acknowledge 
the assistance that will be provided by: 

● Matthew Cauwels 
● Robert Buckley 
● Dr. Phillip Jones 
● Dr. Nicola Elia 
● May 17-16 MicroCART Team Members 

1.2 PROBLEM AND PROJECT STATEMENT 

We intend to create a modular platform that will primarily be used for research in controls and 
embedded systems and for department demos. This will entail building upon the current platform 
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designed by previous teams and adding/improving functionality for more advanced control 
maneuvers, more stable demos, and a more refined optical flow navigation system. 

1.2.1 Problem 

The MicroCART platform designed in previous years has many flaws that hinder its use for research 
and demo purposes. First, the platform fails to familiarize the user(s) of the system in a time 
horizon that would make it viable for research. This is because the current system does not have 
ample documentation available for the users of the system to learn about the platform and its uses. 
From the viewpoint of a user running demos the area within the VRPN system the platform as it 
stands is most stable when confined to flying within the VRPN system as the optical flow 
navigation can not hold position during flight. This means that the areas available to the 
quadcopter for demos can only utilize the small amount of space in the lab for a demo. During 
demos and for research use the quadcopter is limited to only flying to waypoints, it cannot perform 
flips or other control algorithms that could be used in research. Lastly, the quadcopter is controlled 
using a PID controller that requires logical guessing and checking to tune, we will be testing a new 
linear controller that can be computed faster and be tuned around multiple points on the non 
linear model. 

1.2.2 Purpose and Goals 

The MicroCART senior design team will serve several purposes.  One purpose of the team is to 
improve on the existing quadcopter design in order to give graduate students a more stable 
platform to use for research and testing of control theory.  Another purpose is to showcase the 
skills that a student in the ECpE department can gain throughout their time at Iowa State by 
creating an impressive demo that the quad can perform.  The quad should also become more 
reliable so that anybody with little knowledge of the project should be able to read some 
documentation and feel comfortable performing the demo. 

We plan to build upon the previous MicroCART team’s platform by improving the stabilization, 
designing new demos, redesigning the ground station GUI, and building upon the virtual 
quadcopter software. The current system is relatively stable while the quad is within the VRPN 
system, but in order to use the optical flow for navigation, the system needs improvement. This will 
require us to fully understand the current system and design metrics that can be used to 
quantitatively show the results of changes. Additionally, we plan to implement the use of GPS to 
allow the drone to hold its position while navigating via the optical flow sensor. The demos that 
will be designed are meant to show the new functionality added to the quadcopter during our time 
working on the system. While working on the stabilization, the ground station GUI will be 
redesigned. The new GUI will allow for greater control of all functionality on the quadcopter and 
implement more safety measures to make sure that the user cannot cause unintentional harm to 
the drone. Next, the virtual quadcopter is a tool that allows testing of the controls and software 
prior to running the it on the quadcopter. This system is still in development and our goal is to 
have the ability to fully simulate movement and flights within the virtual quadcopter software, and 
to test this software on the quadcopter using Linux running on one of the cores of the ARM chip on 
the Zybo board. While working toward these goals, we want to make major improvement to the 
current state of documentation within the project that will allow next year’s team to gain 
understanding within 4 weeks of gaining access to the files. 
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1.2.3 Solution Approach 
Our approach to the various projects starts with becoming failure with the current system. This 
includes updating documentation, reading existing documentation, and running previous demos. 
Upon gaining enough knowledge we will be building upon the existing platform to add demos and 
functionality that is currently capable. Along side of this we will develop testing hardware for 
parameterizing the motors for adding additional flight simulation capabilities for the virtual quad 
to improve testing as well as building a second quadcopter. By the end of the first semester we 
intend to have multiple object tracking working so that we can demo flight with two quadcopters. 
In the following semester each group will be working on adding new features. Ground Station will 
be updating the GUI to support real-time tracking and add support for the various demos. Controls 
will be developing a linear controls model to be tested against the current PID model. Quadcopter 
Software will be working on developing the new demos and work with hardware acceleration to 
support the new control algorithm. And lastly, the testing team will be finishing implementation of 
the virtual quadcopter to support full flight. During this whole period we will be demoing new 
features to show our clients and advisors progress and get feedback regarding functionality of the 
platform. 

1.3 OPERATIONAL ENVIRONMENT 

The end product (an autonomous quadcopter capable of the tasks described later in this document, 
henceforth referred to as “the quad”) will have to primary environments, one for each of its main 
data sources. 

In order to fly using the VRPN software for position and orientation data, the quad must be inside 
of a small area (less than 10 m2) inside of Coover 3050. This lab is designed to cause very few 
environmental impacts on the quadcopter. Through the use of ventilation, window shades, and 
Coover’s heating and air conditioning, the lab has a nearly constant light and temperature with 
little to no accumulated dust to affect air quality. 

Using optical flow to determine position and orientation, the quad could in theory be flown 
anywhere, but we will still avoid any circumstances that are significantly outside of normal 
conditions. Specifically, optical flow flights will not be held anywhere with temperature extremes, 
strong wind, or direct sunlight. 

1.4 INTENDED USERS AND USES 

The primary set of end users is composed of future MicroCART members and controls graduate 
students at Iowa State. For the goal of creating demonstrations for prospective students, someone 
from the two categories (the user) will be running the demo for them (the audience). This means 
that the users can be assumed to have competence in using multiple forms of programs (for 
example, either GUI or CLI) and in reading general technical documentation.  

The other goal listed above regards the modular implementation of new control algorithms as a 
research opportunity for graduate students. These users have three primary needs from our 
product. The first is a robust and reliable system to decrease variation in test results. This includes 
having sturdy quad hardware, low communication latency, and a bug-free user interface. The 
second need is to have modular software with complete documentation to allow for them to 
achieve the implementation themselves, without the need for significant system rework or 
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intervention of the MicroCART design team. Finally, these students will need the data from the 
system identification in order to form their models. This includes information about mass, 
moments of inertia, motor resistances, rotor areas, and many other properties that determine the 
true actuation of the quadcopter. 

1.5 ASSUMPTIONS AND LIMITATIONS 

1.5.1 Assumptions 
● No more than two quadcopters will be using the system simultaneously. 
● Our VRPN camera system as it exists provides sufficiently accurate position data. 
● The quad will be flying without significant external disturbances 

1.5.2 Limitations 
● Area limitation for multiple quadcopters within the VRPN camera system. 
● Accuracy of onboard sensors (e.g. optical flow, LIDAR, IMU, GPS) 
● Latency and range of the wireless link between the quadcopter and the ground station 

1.6 EXPECTED END PRODUCT AND DELIVERABLES 
The quadcopter system consists of three major subsections: the quadcopter software, the ground 
station, and the control systems. Each of the subsections is essential to meet the desired objectives 
and fulfill our requirements. Documentation and demos are also a major deliverable for our project 
and will be discussed. 

1.6.1 Quad Software 

1.6.1.1 Autonomous Flight 
The current platform allows for autonomous flight within the VRPN system or while using the 
optical flow sensor. This navigation is reliant on received coordinates from the ground station, we 
plan to allow the quadcopter to set its own waypoints to track objects within the VRPN system and 
with on board cameras. This will better support researchers, as only one person will be needed to 
fly the quadcopter safely, and allow for the creation of more advanced demos. 

1.6.1.2 Real-Time Flight Data Communication 
During flight, the quadcopter saves 5 minutes of flight data to be transmitted to the ground station 
upon the flight ending. This action requires approximately 70% of the flight time to transmit the 
data back. This slows down the process of testing the quadcopter substantially and is not ideal if 
many test flights are planned to run. We plan to support the transmission of the data back to the 
ground station in real time. This will allow quicker analyzation of flight data, and reduce the risk of 
running out of battery after the flight is over to allow the data to be safely transmitted. 

1.6.1.3 GPS Navigation 
The current optical flow navigation fails to hold position around a waypoint, as the optical flow 
system does not track the slight changes to the position as the quadcopter drifts. The use of the 
GPS will allow more precision while navigating with optical flow. Additionally, once this system is 
fully functioning, the quadcopter will no longer be confined to the area trackable by the VRPN 
system. 
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1.6.1.4 Linux on Second Core 

The Zybo board, shown in Figure 2, contains a Zync-7000 SoC, which runs all the software on the 
quadcopter, is only using one of its two ARM cores. The second ARM core could be used to run 
Linux to increase the usability of the quadcopter. This could potentially run the virtual quadcopter 
software to allow navigation, or be used by researchers for greater functionality as it could support 
libraries such as OpenCV for computer vision. 

 

Figure 1-2: Zybo Board 

1.6.1.5 Assisted Manual Flight (“Trainer Mode”) 
This platform, as it evolves, is also meant to be a learning platform where we can progressively turn 
on functionality as the user gets more experienced with controlling the quadcopter manually. As 
we can get the quadcopter to hold position within the VRPN system, we can combine this into a 
sequence of steps for a user to learn how to use the quadcopter. This will start with the user only 
being able to move in the x and y directions, then allowing z, and finally taking away all assistance 
but stabilization. This will give researchers and members of next year’s team the ability to learn 
how to fly the drone, before running different control algorithms, so that they can possibly save the 
drone if an error occurs by manually flying the drone to a safe landing. 

1.6.1.6 Virtual Flight Mode 

Through the use of the MicroCART Simulator, the quadcopter can operate in a virtual flight mode, 
allowing the sensors and actuators to be emulated in software. This provides Software-In-Loop 
testing capability as well as Processor-In-Loop testing. Controls This will aid in accident prevention 
as the potential virtual crashes will have no impact on the physical quad. 

1.6.1.7 Continuous Integration 
Continuous Integration is the system that tests changes to code using the virtual quadcopter 
software. We plan to expand the tests to allow for more thorough testing of code. This will require 
expanded functionality of the virtual quadcopter to allow for testing of all components of the 
software as well as control algorithms. The tests are ran automatically by a git hook script once new 
changes are committed into the repository. 
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1.6.2 Ground Station 

1.6.2.1 Real-Time Transmission to Backend 
The backend, as it stands, is setup to transmit VRPN x-position and y-position, as well as 
waypoints. There will have to be improvements to the backend to allow for the real-time 
transmission of data. This data can then be used to display important flight data in real time. This 
will give immediate results in the case of incorrect behavior and allow the GUI to display more 
information to the user. 

1.6.2.2 Redesigned GUI 
The GUI is not fully functional in its current state, and does not do checking for incorrect data 
entered by the user. The new GUI will add all missing functionality and allow users to switch 
modes of navigation during flight (if conditions are met). The GUI will also perform checks when 
sending coordinates to make sure that the user does not try to have the quadcopter accelerate into 
the ground or perform other tasks that may break a component on the quadcopter. Lastly, the 
controls graph generated currently is an image, we would like this to be capable of interaction so 
the user can change PID values from with the GUI. 

1.6.2.3 Multiple Object Tracking Capabilities 
To allow the quadcopter to track an object we first need to get the camera system to recognize a 
second object as trackable. The VRPN system has the capability to track more than one object and 
will send that information to the backend. The backend needs to send this new information to the 
quadcopter for the quadcopter to track the object. 

1.6.2.4 Data Analysis Tool 

As it stands all flight data is logged on the PC and there is a set of separate MATLAB scripts to 
perform analysis and visualize the data. We are proposing a new tool that can be used by graduate 
students to easily view current and past data and use a variety of analysis and visualization scripts. 
This tool will allow for users to add all their logged data and new scripts to the tool and have them 
automatically recognized and listed for use. 

1.6.2.5 Generic Object Integration to Backend Capabilities 

The current platform is only fit for use with our specific quadcopter that accepts our defined 
commands. We plan to expand the functionality of the backend to allow connection of other 
quadcopters or trackables into our system. We are proposing the use of an initialization file for the 
backend and new adapters that can connect to the backend that can be implemented by the user of 
the adapter. 

1.6.3 Controls Systems 

1.6.3.1 Improved Stabilization 
The quadcopter is currently stable and works in demos, but it does still sway slightly in different 
situations. We would like to fine-tune the PID values to increase stabilization even further. This 
will benefit those doing controls research, but it will also allow the demos to run more smoothly. 
This will require new analysis metrics for flight data to show the actual increase, rather than by the 
eye-test. 

PAGE 11 



 

1.6.3.2 Advance Control Maneuvers 

The controls will be further developed and this will allow the quad to do a backflip when 
commanded. This allows us to continue the controls research and further refine the capabilities of 
the quadcopter platform. This also gives us the opportunity to more fully understand the controls 
implemented by the previous team. When fully implemented, the backflip will be controlled 
completely by the quadcopter with the onboard sensors, and the command will come from the 
ground station. 

1.6.3.3 Linear Controls Model 
Implementing a new controls algorithm in the form of a linearized model will further our goal of 
improved stabilization and precision. The model will be built with more direct numerical 
parameters that represent physical quantities on the quadcopter. This will give us a fully distinct 
controls algorithm to compare to the current PID; having two unique methods allows for isolation 
of other components of the system. 

 

1.6.4 Hardware 

1.6.4.1 Second Quadcopter 
A second quadcopter will be developed as requested by our client and advisor, Dr. Jones. This 
provides a second testable quadcopter if one were to ever get damaged. It also allows for additional 
testing if there are multiple users running tests. 

1.6.4.2 Power Regulation Board 

The Zybo board and the motors require different voltage levels to operate. The current method to 
control this and add safety measures is to have an additional cord that needs to be plugged in and 
unplugged before and after flights and to use a voltage regulator circuit, shown in Figure 3. A board 
that can control both voltage levels and provide a mechanism to turn off and on the motors, will be 
created for ease of use of the system. This board will regulate the LiPo battery from 11.1V down to 
5V at 3A. 

 

Figure 1-3: Present step-down converter circuit 
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1.6.5 Documentation 
Many areas of the code are lacking documentation. This includes function and parameter 
explanations, especially in the quadcopter software related code. Additionally, the documentation 
is lacking in other areas such as demos. Our goal is to have documentation for all existing demos, 
documentation consistent in all code, and documentation for the research done during our time on 
the team. 

1.6.6 Demos 
As one purpose of this project is to showcase the talents within this department, new demos need 
to be developed to showcase yearly changes. These demos are performed to controls classes as well 
as to undergraduate students. We plan to develop new demos including: using the VRPN system to 
catch balls, using two drones to build a bridge in the air for a remote-control car, and a fully 
functional optical flow demo. 

We plan to implement the following major demos: 

1. Have a quad that tracks an object on the ground, or in air, and maintains a set distance 
away from it. 

2. Have multiple quads running at the same time flying together.  
3. Have multiple types of quads running at the same time flying together. 

1.6.7 Project Releases 
The current project version consists of the slight sway in VRPN system and a drifting quadcopter 
when using the optical flow for navigation. We plan for five releases, the first having the improved 
stabilization in all demos and a stable demo with LIDAR for height. Next, the transition times 
between waypoints will be reduced to start designing the ball catching demo. This version will also 
have a stable optical flow demo when around a given point (will use GPS to solve this issue). The 
following release will have the functionality to start testing our more advanced demos such as the 
sky bridge. After further testing the fourth version will have the demos fully functioning within the 
VRPN system and the final release will have the same demos but with either optical flow or VRPN 
to perform them. During the third and fourth releases we plan to demo to our clients and advisors 
to get feedback and further refine the created demos. 

2 Specifications and Analysis 

2.1 PROPOSED DESIGN  

2.1.1 Quad Software: 

First of these two include implementing a system for inexperienced quad flyers to fly the quad with 
ease. Our current approach to this is to allow the PWM wave generated by the RC controller to 
control the height setpoint.  

The second major goal of the quad software team is to modify the existing hardware and software 
running on the FPGA to support new demos. This includes but is not exclusive to the following: 
hardware acceleration to reduce utilization for drivers, adding new types of packets to increase the 
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capability of communication between the quad and ground station, and implementing software to 
enable object tracking. 

2.1.2 Controls 

The controls for the quad is currently implemented using nested proportional-integral-derivative 
(PID) controllers. There is a set of PIDs for each of the three Cartesian components of position (x, y, 
z) and one for yaw (rotation around the z-axis). These were chosen because they achieve a very 
configurable approach to quadcopter controls, as modifications to the quad can be accounted for 
by simply adjusting the various PID constants.  

The future plan for the controller is to implement a nonlinear model with distinct linear segments 
that is capable of more precise control of the quad. It will achieve this through the use of more 
precise mathematical information about the quad and its dynamics. 

2.1.3 Ground Station 

For the ground station we have decided to design a more researcher oriented interface and 
features. We plan on creating a more robust software error reporting system, real time logging from 
quads, a built in data analysis tool, adding safety rules for different types of experiments, a more 
detailed documentation scheme for all files and be able to use other drones/trackables with our 
ground station software.  

In doing this we believe our platform to be more ready for actual research tasks. Also with our 
update it will  allow for teams who work on microcart in the coming years to be able to spend less 
time getting up to speed with the project  and more time working it. 

2.1.4 Continuous Integration 

By performing Continuous Integration (CI), we will ensure that software committed into the Git 
repository passes a series of tests defined by test script files. These regression tests will initially be 
created to test all presently implemented functionality (insofar as they can be with individual unit 
tests). As new features are implemented, we will also add corresponding tests that test against their 
functional and nonfunctional requirements so that all future commits will be tested against the 
entire accumulated functionality of the software. MicroCART Simulator will aid in continuous 
integration of the controls testing. 

2.2 DESIGN ANALYSIS 

2.2.1 Quad Software 

In terms of Quad software we have currently not made many modifications to the system from a 
functional perspective. We have looked into modifying the way our system boots to allow for 
multiple different types of sensors as feedback, but to no success yet. one thing I think we really 
need to implement is a better system of testing. When we attempt to test any changes to the 
system it can sake several minutes and in turn slow development time significantly. One idea of 
making a wall plug to power the board and sensors but not the motors as a testing platform instead 
of the batteries. This would enable faster testing iterations and improve development speed 
significantly. Our solutions as of now seem to give us strengths in functionality but at the sacrifice 
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of future development time increasing. this is due to hardware acceleration being costly (in terms 
of time) to modify and test as opposed to a software solution. 

2.2.2 Controls 

As described in the Proposed Design section, the plan is to implement a nonlinear control in a 
finite number of linearized segments. This solution will have more precision than the existing PID 
controllers by computing control signals directly from the theoretical dynamics of the quad. This 
model will use a very precise representation of the quad obtained from planned work in system 
identification. To emphasize the point from above, this approach allows for higher precision - and 
thus speed - than a PID implementation at the cost of being more difficult to configure when the 
quad changes and having a smaller range of operation if not enough linear segments are included. 

2.2.3 Ground Station 

We currently have a robust framework and backend with a bare bones GUI implemented for 
controlling a single quadcopter. Moving forward we plan on using the backend only modifying 
what is needed to implement multiple quads and fix any bugs we find. However we will focus 
heavily on GUI development and making our platform one that is extremely easy to work with for 
demos and research. As defined in 1.6.2 we plan on adding real time transmission, redesigned GUI, 
a data analysis tool and multiple object tracking capabilities. Each of these parts will either make 
research easier to use, take less time to collect data, better review the data gathered, and allow for 
more complicated and impressive demos. 

2.2.4 Continuous Integration 

Integration of new features into the system is done through a series of tests ran automatically after 
every commit in the online Git repository. Tests are written in scripting programming languages 
such as Perl or Python. The merge request merge is unlocked upon successful run of the test 
scripts. MicroCART Simulator (MCS) will be a virtual environment for the current virtual 
quadcopter. Currently, the MCS is in the early stage of development and it is dependent on the 
successful completion of the quadcopter flight model description. Once completed, we will be able 
to simulate virtual flight and thus test the controls software along with our current simple software 
test. 

2.3 IMPLEMENTATION ISSUES AND CHALLENGES 

2.3.1 Quad Software 

One of the main challenges of the Quad software design will be in transitioning platforms from XPS 
to vivado. This is due to Vivado not supporting the same IP’s as XPS. Additionally the team will 
need to create, test and implement the custom IP’s of the past teams. The next major challenge will 
be in maintaining a low control loop time while expanding the amount of data being sent to the 
ground station.  

2.3.2 Controls 

The primary challenge in the new controls implementation lies in the technical difficulty of the 
physics and mathematics. We will be collaborating with a controls-focused PhD student whose will 
be handling the theoretical model computation. This leaves the translation challenges to us: 
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accurately and efficiently implementing the precise software and simulation to reflect the specified 
controller. 

2.3.3 Ground Station 

There have been many issues when implementing new features. The ground station was developed 
for a single quad of a single type, this has caused some design issues with trying to implement 
multiquad support. Another big issue the ground station team has encountered has to deal with 
threading on the graphical user interface and blocking operations on the front end. Finally there 
are some design challenges working in real time when trying to send data to and from the quad. 

2.3.4 Continuous Integration 

One of the biggest challenges in continuous integration was designing an interface that would 
allow us to test the platform at the system level. The existing virtual quadcopter software did not 
simulate flight. We needed to create a reliable flight simulator to be able to test the controls and 
controls related quadcopter software. 

2.4 STANDARDS 

There is not a direct set of standards that is well suited for quadcopter drone software and 
hardware development. IEEE publishes some high-power electronics safety standards, but they are 
designed for systems significantly larger than ours. There are also pure software standards, but our 
project, as seen above, is not purely software. As such, the closest thing we have to a standard to 
follow is DO-178B, the aviation software standard created by the United States government. This 
still has its share of shortcomings in relation to our project, however. Given the experimental 
nature of MicroCART and its remarkably low risk of serious injury upon a significant software 
failure (compared to the manned aircraft that the standard was designed for), some of the 
requirements should be considerably loosened. For example, DO-178B gives an acceptable 
frequency of failure for each level of significance, and even the lowest level of risk is given an 
acceptable frequency of one failure per 1000 hours, which is unreasonably (and unnecessarily) strict 
given the scope and scale of the project at hand. Nonetheless, the standard sets forward a useful 
sequence of steps in which there is a process to work from requirements to code and then to fully 
test both for accuracy and completeness. 

3 Testing and Implementation 

3.1 INTERFACE SPECIFICATIONS 

The major interfaces for the MicroCART project involve the ground station and the multiple areas 
including the Backend, Frontend, CLI, and GUI. Figure 3-1 shows the communication between the 
various areas and the sockets outside of the ground station computer. 
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Figure 3-1: Ground Station flow diagram 

3.1.1 Ground Station Interface Specifications 
The ground station interface consists of two major components including the Backend and 
Frontend. The Backend provides a server that the VRPN system and user interfaces connect to via 
sockets for communication. This allows the obtaining of position information from the VRPN 
system as well as accepting commands from the frontend. Additionally, the backend connects to 
the quadcopter also via a socket. The frontend provides methods that handle the interfacing with 
the Backend for both the CLI and GUI. 

3.1.2 Ground Station GUI Specifications 

The Graphical User Interface will have four tabs that allow for starting of the backend, viewing the 
control graph, navigation, and real-time graphing. The backend tab both starts the backend and 
will also allow for the use of the Command Line Interface directly within the GUI. The controls tab 
allows the user to change the constant values within the controls to tune the PID values during 
flight. Navigation allows sending of coordinates to the quadcopter and the running of demos. 
Lastly, the real-time graphing tab will allow a configurable real-time data transmission between the 
quadcopter and GUI to graph during flight. 

3.1.3 Ground Station CLI Specifications 

The Command Line Interface provides direct access to the commands that the GUI sends for the 
user. It does not provide many of the extra features that the GUI provides such as automating 
setpoint sending, real-time transmission, and viewing the control graph. This is a more lightweight 
interface that still provides the use of all the same commands sent from the GUI. 

3.1.4 Ground Station Access Point Specifications 

To support multiple quadcopters we plan on creating a wireless access point on the ground station. 
This will require a server software such as hostapd and a reprogramming of the wifi on the current 
quad. Once implemented we will be able to host multiple quads simultaneously from a single 
ground station [2]. 

3.2 HARDWARE AND SOFTWARE 

3.2.1 Automated Unit and Functional Testing 
All commits to the Git repository are tested through a suite of continuous integration scripts. These 
scripts perform unit tests on the software that runs on the quad and higher level functional tests 
that run on the “virtual quad” which interfaces with a set of Unix drivers. The scripts are run 
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automatically using the GitLab pipeline integration. We will continue to improve the test coverage 
over the existing code, and as more features are added, tests will be added to cover them. The 
automated testing flow is shown below in Figure 3-2. 

 

Figure 3-2: Diagram of automated testing  

3.2.2 Flight Simulation 

The correctness and requirements of the quadcopter software will be tested through the 
MicroCART Simulator (MCS) and the help of the simulator event test scripts. Different flight 
regimes will be tested and verified whether the quadcopter position and orientation are within a 
threshold. In case of an accident, ground contacts are detected and the unsuccessful test is 
terminated early. An example of the simulation output is provided in Figure 3-3. 

 

Figure 3-3: Simple quadcopter flight inside MCS 

3.2.3 Flight Test 

The current implementation of the ground station allows for a list of setpoints to be loaded into the 
GUI to allow for autonomous navigation.  The quad will automatically relocate to the next point in 
the list once it gets within a defined range of the setpoint.  We plan to create a list of setpoints that 
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will be used to test each new build of the quad software.  This will enable us to test edge cases and 
to have a flight pattern that will test the more extreme patterns of movement. Another method of 
testing is to use the CLI to directly call commands that we are testing. In Figure 3-3 the CLI is 
shown in the top left, Backend in the bottom left and the flight is on the right.  

 

Figure 3-4: Flight Test with CLI 

3.2.4 System Identification 

Eventually, we plan to build custom testing fixtures for use in system identification. The first we 
will use is a stand to measure the thrust of a single motor with a prop. It will be connected to a 
scale to measure a difference between the gravitational force when stationary and when producing 
thrust. The main non-obvious physical feature of this component is its length; it is important to 
distance the rotor from the scale to minimize ground effect. Another piece of testing hardware will 
be similar, but for measuring torque. The physical setup will be different, but it will still use a 
custom-designed hardware connecting a single motor under test to a scale. This system 
identification will be used in forming models for both the the simulator (as described above) and 
the controls algorithm.  
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3.3 PROCESS DIAGRAM 

 

Figure 3-5: Design Process flow diagram, inspired by [3] 

The above diagram explains the process we will as a guide to development. To effectively produce 
and improve upon the existing system  we must first discuss progress and determine what must be 
addressed. After determining the problems we must further define them and come up with 
solutions for those defined issues. After brainstorming prototyping solutions would be the next 
step. Moving forward, those solutions should be tested using the testing method described in 
section 3.2. After the correct solutions is determined and confirmed that solution should be 
released into our master branch in the repository. 

3.4 MODELING AND SIMULATION 

To test the controls, we have a Simulink model that simulates three things: the quad control logic, 
the actuation of the quad given the output from the controls (i.e. physics), and the sensor and 
communication system. These three components tied together in a loop allow us to easily run 
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initial tests on modifications to (or new implementations of) the controls algorithm without the 
physical risks of running the untested model on the quadcopter itself. This model is based off of [1] 
and takes into account as many factors as possible (for example, the Sensors component passes the 
data and simulated noise through quantization and time delay), but it is still not a guaranteed 
proof of functionality. 

Software-In-Loop and Processor-In-Loop simulation  will be available through MicroCART 
Simulator (MCS). MCS backend runs on a flight dynamics simulator called JSBSim which provides 
environment simulation for aerial vehicles. The controls software is connected to MCS using a TCP 
socket and the output of the controls software is connected into the simulator to form a closed 
loop. By running different scripted scenarios, we can simulate different flight regimes and test our 
controls and the overall correctness of our quadcopter software. 

3.5 RESULTS 

Much of the semester to this point has been to the end of producing documentation, investigating 
the existing system implementation, planning future developments, and initializing test structures. 
As such, we have no results to report up to this point (October 15, 2017). 

We will update this section of the document upon the completion of a meaningful amount of 
testing and collection of results.  

4 Closing Material 

4.1 CONCLUSION 

Our MicroCART team has been steadily working to produce a more stable flying quadcopter that 
can be easily demoed to other students and faculty. We have vastly improved documentation for 
the entire MicroCART project that has been passed on to us from the previous team. With 
complete documentation for the current system, each sub team of MicroCART will be able to work 
towards their goals and allow the sub teams to better understand what how their portion interacts 
within the complete system. The quadcopter software sub team will continue to work towards their 
goals of improving the flight data communications, integrating GPS navigation for more precise 
flight, utilize the second ARM core on our board that is currently unused, and also add different 
flight modes to the quadcopter that will allow beginner and advanced users to operate the 
quadcopter. The ground station team is looking to improve the backend of the system to allow for 
the real-time flight data transmission. They will also redesign the GUI of the system and develop a 
new tool to analyze the flight data.  Controls team is focused on tuning the PID values to further 
stabilize the quadcopter flight. Controls will also work on developing an advanced demo such as 
having the quadcopter do a flip. The continuous integration team will work on ensuring that all 
code committed to the Git repository is functional. They are also responsible for creating the tests 
that will determine the functional and nonfunctional requirements for new features. With all of the 
sub teams working on their portion of the project and focusing on their main goals, we should have 
no issues meeting the requests of our client.  
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4.3 APPENDIX

 

Figure 4-1: Block diagram of system hardware and software 
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