

MicroCART 2017-2018
Design Document

Team # 17

Clients / Advisors:
Dr. Phillip Jones
Dr. Nicola Elia

Team Members:

Jakub Hladik - Test Lead
Tyler Imboden - Quad Software Lead

Matthew Kelly - Webmaster and Documentation Lead
Dane Larson - Ground Station Lead
Blake Pries - Communications Lead

Austin Rohlfing - Controls Lead
Peter Thedens - Repository Lead

Kyle Trost - Team Lead

Team Website: http://sdmay18-17.sd.ece.iastate.edu

Team Email: sdmay18-17@iastate.edu
Revised: December 4, 2017

Version 2.0

http://sdmay18-17.sd.ece.iastate.edu/

Table of Contents
1 Introduction 7

1.1 Acknowledgement 7

1.2 Problem and Project Statement 7

1.2.1 Problem 8

1.2.2 Purpose and Goals 8

1.2.3 Solution Approach 9

1.3 Operational Environment 9

1.4 Intended Users and uses 9

1.5 Assumptions and Limitations 10

1.5.1 Assumptions 10

1.5.2 Limitations 10

1.6 Expected End Product and Deliverables 10

1.6.1 Quad Software 10

1.6.1.1 Autonomous Flight 10

1.6.1.2 Real-Time Flight Data Communication 10

1.6.1.3 GPS Navigation 10

1.6.1.4 Linux on Second Core 11

1.6.1.5 Assisted Manual Flight (“Trainer Mode”) 11

1.6.1.6 Virtual Flight Mode 11

1.6.1.7 Continuous Integration 11

1.6.2 Ground Station 12

1.6.2.1 Real-Time Transmission to Backend 12

1.6.2.2 Redesigned GUI 12

1.6.2.3 Multiple Object Tracking Capabilities 12

1.6.2.4 Data Analysis Tool 12

1.6.2.5 Generic Object Integration to Backend Capabilities 12

1.6.3 Controls Systems 12

1.6.3.1 Improved Stabilization 12

PAGE 1

1.6.3.2 Advance Control Maneuvers 13

1.6.3.3 Linear Controls Model 13

1.6.4 Hardware 13

1.6.4.1 Second Quadcopter 13

1.6.4.2 Power Regulation Board 13

1.6.5 Documentation 14

1.6.6 Demos 14

1.6.7 Project Releases 14

2 Specifications and Analysis 15

2.1 Proposed Design 15

2.1.1 Quad Software: 15

2.1.2 Controls 15

2.1.3 Ground Station 15

2.1.4 Continuous Integration 16

2.2 Design Analysis 16

2.2.1 Quad Software 16

2.2.2 Controls 16

2.2.3 Ground Station 16

2.2.4 Continuous Integration 16

2.3 Implementation Issues and Challenges 17

2.3.1 Quad Software 17

2.3.2 Controls 17

2.3.3 Ground Station 17

2.3.4 Continuous Integration 17

2.4 Standards 17

3 Testing and Implementation 18

3.1 Interface Specifications 18

3.1.1 Ground Station Interface Specifications 18

3.1.2 Ground Station GUI Specifications 18

PAGE 2

3.1.3 Ground Station CLI Specifications 18

3.1.4 Ground Station Access Point Specifications 19

3.2 Hardware and software 19

3.2.1 Automated Unit and Functional Testing 19

3.2.2 Flight Simulation 19

3.2.3 Flight Test 20

3.2.4 System Identification 21

3.3 Process Diagram 22

3.4 Modeling and Simulation 22

3.5 Results 23

4 Closing Material 23

4.1 Conclusion 23

4.2 References 23

4.3 Appendix 24

PAGE 3

List of Figures

Figure 1-1: MicroCART quadcopter 6

Figure 1-2: Zybo Board 10

Figure 1-3: Present step-down converter circuit 12

Figure 3-1: Ground Station flow diagram 17

Figure 3-2: Diagram of automated testing 18

Figure 3-3: Simple quadcopter flight inside MCS 18

Figure 3-4: Flight Test with CLI 19

Figure 3-5: Design Process flow diagram 20

Figure 4-1: Block diagram of system hardware and software 22

PAGE 4

Definitions

Term Definition

CLI Command line interface

Continuous
Integration

automated process of running tests on every commit to the repository

Demo Short for demonstration; this is one of the deliverables of the project: a
demonstration of the quad’s capabilities, for example, doing a backflip
with the quad, finding an object and following it, communicating with a
second quad to perform flight patterns

GPS Global Positioning System; space-based radionavigation system using
satellites to determine position; proposed to find position (x, y) when
not in the lab using the VRPN system

Ground station The application that runs on a host computer that communicates with
the quad via a Wi-Fi connection and sends it coordinates to the quad

GUI Graphical user interface

IR Infrared wavelengths of light longer than visible light; used in the VRPN
system to determine the position of the quad

LIDAR Light Detection and Ranging; this is a system for determining the
altitude (z) of the quad using the onboard sensor

Optical Flow system using pattern of motion of objects, surfaces, and edges caused by
the relative motion between the and the scene to determine position;
used by the quad to calculate position (x, y) when not in the lab using
the VRPN system

PID Proportional-integral-derivative control system; standard control
algorithm used on the quad

Quad Short for quadcopter; this is the hardware platform we use in this
project

Setpoint in a control system, the target value for an essential variable

VRPN Virtual-Reality Peripheral Network; this is the system used to determine
the position (x, y, z) and orientation (φ,θ,ψ) of the quad in the lab using
a set of 12 stationary cameras and an IR transmitter on the quad

PAGE 5

1 Introduction
Microprocessor Controlled Aerial Robotics Team or MicroCART project is centered around the
development of a quadcopter (see Figure 1 below) and tracking system. This project has been in
development since 1998 and the current system has been passed down since 2006. The project aims
to create a stable and easy to use platform for researching control theory. The quadcopter flies
primarily in the Distributed Sensing and Decision Making Laboratory within a twelve camera
infrared tracking system.

Figure 1-1: MicroCART quadcopter

1.1 ACKNOWLEDGEMENT

MicroCART is a project that is assisted by graduate students working in controls under Dr. Nicola
Elia and Dr. Phillip Jones. Additionally, as this is an ongoing project previous team members will
also be providing help in understanding the current system. As such, we would like to acknowledge
the assistance that will be provided by:

● Matthew Cauwels
● Robert Buckley
● Dr. Phillip Jones
● Dr. Nicola Elia
● May 17-16 MicroCART Team Members

1.2 PROBLEM AND PROJECT STATEMENT

We intend to create a modular platform that will primarily be used for research in controls and
embedded systems and for department demos. This will entail building upon the current platform

PAGE 6

designed by previous teams and adding/improving functionality for more advanced control
maneuvers, more stable demos, and a more refined optical flow navigation system.

1.2.1 Problem

The MicroCART platform designed in previous years has many flaws that hinder its use for research
and demo purposes. First, the platform fails to familiarize the user(s) of the system in a time
horizon that would make it viable for research. This is because the current system does not have
ample documentation available for the users of the system to learn about the platform and its uses.
From the viewpoint of a user running demos the area within the VRPN system the platform as it
stands is most stable when confined to flying within the VRPN system as the optical flow
navigation can not hold position during flight. This means that the areas available to the
quadcopter for demos can only utilize the small amount of space in the lab for a demo. During
demos and for research use the quadcopter is limited to only flying to waypoints, it cannot perform
flips or other control algorithms that could be used in research. Lastly, the quadcopter is controlled
using a PID controller that requires logical guessing and checking to tune, we will be testing a new
linear controller that can be computed faster and be tuned around multiple points on the non
linear model.

1.2.2 Purpose and Goals

The MicroCART senior design team will serve several purposes. One purpose of the team is to
improve on the existing quadcopter design in order to give graduate students a more stable
platform to use for research and testing of control theory. Another purpose is to showcase the
skills that a student in the ECpE department can gain throughout their time at Iowa State by
creating an impressive demo that the quad can perform. The quad should also become more
reliable so that anybody with little knowledge of the project should be able to read some
documentation and feel comfortable performing the demo.

We plan to build upon the previous MicroCART team’s platform by improving the stabilization,
designing new demos, redesigning the ground station GUI, and building upon the virtual
quadcopter software. The current system is relatively stable while the quad is within the VRPN
system, but in order to use the optical flow for navigation, the system needs improvement. This will
require us to fully understand the current system and design metrics that can be used to
quantitatively show the results of changes. Additionally, we plan to implement the use of GPS to
allow the drone to hold its position while navigating via the optical flow sensor. The demos that
will be designed are meant to show the new functionality added to the quadcopter during our time
working on the system. While working on the stabilization, the ground station GUI will be
redesigned. The new GUI will allow for greater control of all functionality on the quadcopter and
implement more safety measures to make sure that the user cannot cause unintentional harm to
the drone. Next, the virtual quadcopter is a tool that allows testing of the controls and software
prior to running the it on the quadcopter. This system is still in development and our goal is to
have the ability to fully simulate movement and flights within the virtual quadcopter software, and
to test this software on the quadcopter using Linux running on one of the cores of the ARM chip on
the Zybo board. While working toward these goals, we want to make major improvement to the
current state of documentation within the project that will allow next year’s team to gain
understanding within 4 weeks of gaining access to the files.

PAGE 7

1.2.3 Solution Approach
Our approach to the various projects starts with becoming failure with the current system. This
includes updating documentation, reading existing documentation, and running previous demos.
Upon gaining enough knowledge we will be building upon the existing platform to add demos and
functionality that is currently capable. Along side of this we will develop testing hardware for
parameterizing the motors for adding additional flight simulation capabilities for the virtual quad
to improve testing as well as building a second quadcopter. By the end of the first semester we
intend to have multiple object tracking working so that we can demo flight with two quadcopters.
In the following semester each group will be working on adding new features. Ground Station will
be updating the GUI to support real-time tracking and add support for the various demos. Controls
will be developing a linear controls model to be tested against the current PID model. Quadcopter
Software will be working on developing the new demos and work with hardware acceleration to
support the new control algorithm. And lastly, the testing team will be finishing implementation of
the virtual quadcopter to support full flight. During this whole period we will be demoing new
features to show our clients and advisors progress and get feedback regarding functionality of the
platform.

1.3 OPERATIONAL ENVIRONMENT

The end product (an autonomous quadcopter capable of the tasks described later in this document,
henceforth referred to as “the quad”) will have to primary environments, one for each of its main
data sources.

In order to fly using the VRPN software for position and orientation data, the quad must be inside
of a small area (less than 10 m2) inside of Coover 3050. This lab is designed to cause very few
environmental impacts on the quadcopter. Through the use of ventilation, window shades, and
Coover’s heating and air conditioning, the lab has a nearly constant light and temperature with
little to no accumulated dust to affect air quality.

Using optical flow to determine position and orientation, the quad could in theory be flown
anywhere, but we will still avoid any circumstances that are significantly outside of normal
conditions. Specifically, optical flow flights will not be held anywhere with temperature extremes,
strong wind, or direct sunlight.

1.4 INTENDED USERS AND USES

The primary set of end users is composed of future MicroCART members and controls graduate
students at Iowa State. For the goal of creating demonstrations for prospective students, someone
from the two categories (the user) will be running the demo for them (the audience). This means
that the users can be assumed to have competence in using multiple forms of programs (for
example, either GUI or CLI) and in reading general technical documentation.

The other goal listed above regards the modular implementation of new control algorithms as a
research opportunity for graduate students. These users have three primary needs from our
product. The first is a robust and reliable system to decrease variation in test results. This includes
having sturdy quad hardware, low communication latency, and a bug-free user interface. The
second need is to have modular software with complete documentation to allow for them to
achieve the implementation themselves, without the need for significant system rework or

PAGE 8

intervention of the MicroCART design team. Finally, these students will need the data from the
system identification in order to form their models. This includes information about mass,
moments of inertia, motor resistances, rotor areas, and many other properties that determine the
true actuation of the quadcopter.

1.5 ASSUMPTIONS AND LIMITATIONS

1.5.1 Assumptions
● No more than two quadcopters will be using the system simultaneously.
● Our VRPN camera system as it exists provides sufficiently accurate position data.
● The quad will be flying without significant external disturbances

1.5.2 Limitations
● Area limitation for multiple quadcopters within the VRPN camera system.
● Accuracy of onboard sensors (e.g. optical flow, LIDAR, IMU, GPS)
● Latency and range of the wireless link between the quadcopter and the ground station

1.6 EXPECTED END PRODUCT AND DELIVERABLES
The quadcopter system consists of three major subsections: the quadcopter software, the ground
station, and the control systems. Each of the subsections is essential to meet the desired objectives
and fulfill our requirements. Documentation and demos are also a major deliverable for our project
and will be discussed.

1.6.1 Quad Software

1.6.1.1 Autonomous Flight
The current platform allows for autonomous flight within the VRPN system or while using the
optical flow sensor. This navigation is reliant on received coordinates from the ground station, we
plan to allow the quadcopter to set its own waypoints to track objects within the VRPN system and
with on board cameras. This will better support researchers, as only one person will be needed to
fly the quadcopter safely, and allow for the creation of more advanced demos.

1.6.1.2 Real-Time Flight Data Communication
During flight, the quadcopter saves 5 minutes of flight data to be transmitted to the ground station
upon the flight ending. This action requires approximately 70% of the flight time to transmit the
data back. This slows down the process of testing the quadcopter substantially and is not ideal if
many test flights are planned to run. We plan to support the transmission of the data back to the
ground station in real time. This will allow quicker analyzation of flight data, and reduce the risk of
running out of battery after the flight is over to allow the data to be safely transmitted.

1.6.1.3 GPS Navigation
The current optical flow navigation fails to hold position around a waypoint, as the optical flow
system does not track the slight changes to the position as the quadcopter drifts. The use of the
GPS will allow more precision while navigating with optical flow. Additionally, once this system is
fully functioning, the quadcopter will no longer be confined to the area trackable by the VRPN
system.

PAGE 9

1.6.1.4 Linux on Second Core

The Zybo board, shown in Figure 2, contains a Zync-7000 SoC, which runs all the software on the
quadcopter, is only using one of its two ARM cores. The second ARM core could be used to run
Linux to increase the usability of the quadcopter. This could potentially run the virtual quadcopter
software to allow navigation, or be used by researchers for greater functionality as it could support
libraries such as OpenCV for computer vision.

Figure 1-2: Zybo Board

1.6.1.5 Assisted Manual Flight (“Trainer Mode”)
This platform, as it evolves, is also meant to be a learning platform where we can progressively turn
on functionality as the user gets more experienced with controlling the quadcopter manually. As
we can get the quadcopter to hold position within the VRPN system, we can combine this into a
sequence of steps for a user to learn how to use the quadcopter. This will start with the user only
being able to move in the x and y directions, then allowing z, and finally taking away all assistance
but stabilization. This will give researchers and members of next year’s team the ability to learn
how to fly the drone, before running different control algorithms, so that they can possibly save the
drone if an error occurs by manually flying the drone to a safe landing.

1.6.1.6 Virtual Flight Mode

Through the use of the MicroCART Simulator, the quadcopter can operate in a virtual flight mode,
allowing the sensors and actuators to be emulated in software. This provides Software-In-Loop
testing capability as well as Processor-In-Loop testing. Controls This will aid in accident prevention
as the potential virtual crashes will have no impact on the physical quad.

1.6.1.7 Continuous Integration
Continuous Integration is the system that tests changes to code using the virtual quadcopter
software. We plan to expand the tests to allow for more thorough testing of code. This will require
expanded functionality of the virtual quadcopter to allow for testing of all components of the
software as well as control algorithms. The tests are ran automatically by a git hook script once new
changes are committed into the repository.

PAGE 10

1.6.2 Ground Station

1.6.2.1 Real-Time Transmission to Backend
The backend, as it stands, is setup to transmit VRPN x-position and y-position, as well as
waypoints. There will have to be improvements to the backend to allow for the real-time
transmission of data. This data can then be used to display important flight data in real time. This
will give immediate results in the case of incorrect behavior and allow the GUI to display more
information to the user.

1.6.2.2 Redesigned GUI
The GUI is not fully functional in its current state, and does not do checking for incorrect data
entered by the user. The new GUI will add all missing functionality and allow users to switch
modes of navigation during flight (if conditions are met). The GUI will also perform checks when
sending coordinates to make sure that the user does not try to have the quadcopter accelerate into
the ground or perform other tasks that may break a component on the quadcopter. Lastly, the
controls graph generated currently is an image, we would like this to be capable of interaction so
the user can change PID values from with the GUI.

1.6.2.3 Multiple Object Tracking Capabilities
To allow the quadcopter to track an object we first need to get the camera system to recognize a
second object as trackable. The VRPN system has the capability to track more than one object and
will send that information to the backend. The backend needs to send this new information to the
quadcopter for the quadcopter to track the object.

1.6.2.4 Data Analysis Tool

As it stands all flight data is logged on the PC and there is a set of separate MATLAB scripts to
perform analysis and visualize the data. We are proposing a new tool that can be used by graduate
students to easily view current and past data and use a variety of analysis and visualization scripts.
This tool will allow for users to add all their logged data and new scripts to the tool and have them
automatically recognized and listed for use.

1.6.2.5 Generic Object Integration to Backend Capabilities

The current platform is only fit for use with our specific quadcopter that accepts our defined
commands. We plan to expand the functionality of the backend to allow connection of other
quadcopters or trackables into our system. We are proposing the use of an initialization file for the
backend and new adapters that can connect to the backend that can be implemented by the user of
the adapter.

1.6.3 Controls Systems

1.6.3.1 Improved Stabilization
The quadcopter is currently stable and works in demos, but it does still sway slightly in different
situations. We would like to fine-tune the PID values to increase stabilization even further. This
will benefit those doing controls research, but it will also allow the demos to run more smoothly.
This will require new analysis metrics for flight data to show the actual increase, rather than by the
eye-test.

PAGE 11

1.6.3.2 Advance Control Maneuvers

The controls will be further developed and this will allow the quad to do a backflip when
commanded. This allows us to continue the controls research and further refine the capabilities of
the quadcopter platform. This also gives us the opportunity to more fully understand the controls
implemented by the previous team. When fully implemented, the backflip will be controlled
completely by the quadcopter with the onboard sensors, and the command will come from the
ground station.

1.6.3.3 Linear Controls Model
Implementing a new controls algorithm in the form of a linearized model will further our goal of
improved stabilization and precision. The model will be built with more direct numerical
parameters that represent physical quantities on the quadcopter. This will give us a fully distinct
controls algorithm to compare to the current PID; having two unique methods allows for isolation
of other components of the system.

1.6.4 Hardware

1.6.4.1 Second Quadcopter
A second quadcopter will be developed as requested by our client and advisor, Dr. Jones. This
provides a second testable quadcopter if one were to ever get damaged. It also allows for additional
testing if there are multiple users running tests.

1.6.4.2 Power Regulation Board

The Zybo board and the motors require different voltage levels to operate. The current method to
control this and add safety measures is to have an additional cord that needs to be plugged in and
unplugged before and after flights and to use a voltage regulator circuit, shown in Figure 3. A board
that can control both voltage levels and provide a mechanism to turn off and on the motors, will be
created for ease of use of the system. This board will regulate the LiPo battery from 11.1V down to
5V at 3A.

Figure 1-3: Present step-down converter circuit

PAGE 12

1.6.5 Documentation
Many areas of the code are lacking documentation. This includes function and parameter
explanations, especially in the quadcopter software related code. Additionally, the documentation
is lacking in other areas such as demos. Our goal is to have documentation for all existing demos,
documentation consistent in all code, and documentation for the research done during our time on
the team.

1.6.6 Demos
As one purpose of this project is to showcase the talents within this department, new demos need
to be developed to showcase yearly changes. These demos are performed to controls classes as well
as to undergraduate students. We plan to develop new demos including: using the VRPN system to
catch balls, using two drones to build a bridge in the air for a remote-control car, and a fully
functional optical flow demo.

We plan to implement the following major demos:

1. Have a quad that tracks an object on the ground, or in air, and maintains a set distance
away from it.

2. Have multiple quads running at the same time flying together.
3. Have multiple types of quads running at the same time flying together.

1.6.7 Project Releases
The current project version consists of the slight sway in VRPN system and a drifting quadcopter
when using the optical flow for navigation. We plan for five releases, the first having the improved
stabilization in all demos and a stable demo with LIDAR for height. Next, the transition times
between waypoints will be reduced to start designing the ball catching demo. This version will also
have a stable optical flow demo when around a given point (will use GPS to solve this issue). The
following release will have the functionality to start testing our more advanced demos such as the
sky bridge. After further testing the fourth version will have the demos fully functioning within the
VRPN system and the final release will have the same demos but with either optical flow or VRPN
to perform them. During the third and fourth releases we plan to demo to our clients and advisors
to get feedback and further refine the created demos.

2 Specifications and Analysis

2.1 PROPOSED DESIGN

2.1.1 Quad Software:

First of these two include implementing a system for inexperienced quad flyers to fly the quad with
ease. Our current approach to this is to allow the PWM wave generated by the RC controller to
control the height setpoint.

The second major goal of the quad software team is to modify the existing hardware and software
running on the FPGA to support new demos. This includes but is not exclusive to the following:
hardware acceleration to reduce utilization for drivers, adding new types of packets to increase the

PAGE 13

capability of communication between the quad and ground station, and implementing software to
enable object tracking.

2.1.2 Controls

The controls for the quad is currently implemented using nested proportional-integral-derivative
(PID) controllers. There is a set of PIDs for each of the three Cartesian components of position (x, y,
z) and one for yaw (rotation around the z-axis). These were chosen because they achieve a very
configurable approach to quadcopter controls, as modifications to the quad can be accounted for
by simply adjusting the various PID constants.

The future plan for the controller is to implement a nonlinear model with distinct linear segments
that is capable of more precise control of the quad. It will achieve this through the use of more
precise mathematical information about the quad and its dynamics.

2.1.3 Ground Station

For the ground station we have decided to design a more researcher oriented interface and
features. We plan on creating a more robust software error reporting system, real time logging from
quads, a built in data analysis tool, adding safety rules for different types of experiments, a more
detailed documentation scheme for all files and be able to use other drones/trackables with our
ground station software.

In doing this we believe our platform to be more ready for actual research tasks. Also with our
update it will allow for teams who work on microcart in the coming years to be able to spend less
time getting up to speed with the project and more time working it.

2.1.4 Continuous Integration

By performing Continuous Integration (CI), we will ensure that software committed into the Git
repository passes a series of tests defined by test script files. These regression tests will initially be
created to test all presently implemented functionality (insofar as they can be with individual unit
tests). As new features are implemented, we will also add corresponding tests that test against their
functional and nonfunctional requirements so that all future commits will be tested against the
entire accumulated functionality of the software. MicroCART Simulator will aid in continuous
integration of the controls testing.

2.2 DESIGN ANALYSIS

2.2.1 Quad Software

In terms of Quad software we have currently not made many modifications to the system from a
functional perspective. We have looked into modifying the way our system boots to allow for
multiple different types of sensors as feedback, but to no success yet. one thing I think we really
need to implement is a better system of testing. When we attempt to test any changes to the
system it can sake several minutes and in turn slow development time significantly. One idea of
making a wall plug to power the board and sensors but not the motors as a testing platform instead
of the batteries. This would enable faster testing iterations and improve development speed
significantly. Our solutions as of now seem to give us strengths in functionality but at the sacrifice

PAGE 14

of future development time increasing. this is due to hardware acceleration being costly (in terms
of time) to modify and test as opposed to a software solution.

2.2.2 Controls

As described in the Proposed Design section, the plan is to implement a nonlinear control in a
finite number of linearized segments. This solution will have more precision than the existing PID
controllers by computing control signals directly from the theoretical dynamics of the quad. This
model will use a very precise representation of the quad obtained from planned work in system
identification. To emphasize the point from above, this approach allows for higher precision - and
thus speed - than a PID implementation at the cost of being more difficult to configure when the
quad changes and having a smaller range of operation if not enough linear segments are included.

2.2.3 Ground Station

We currently have a robust framework and backend with a bare bones GUI implemented for
controlling a single quadcopter. Moving forward we plan on using the backend only modifying
what is needed to implement multiple quads and fix any bugs we find. However we will focus
heavily on GUI development and making our platform one that is extremely easy to work with for
demos and research. As defined in 1.6.2 we plan on adding real time transmission, redesigned GUI,
a data analysis tool and multiple object tracking capabilities. Each of these parts will either make
research easier to use, take less time to collect data, better review the data gathered, and allow for
more complicated and impressive demos.

2.2.4 Continuous Integration

Integration of new features into the system is done through a series of tests ran automatically after
every commit in the online Git repository. Tests are written in scripting programming languages
such as Perl or Python. The merge request merge is unlocked upon successful run of the test
scripts. MicroCART Simulator (MCS) will be a virtual environment for the current virtual
quadcopter. Currently, the MCS is in the early stage of development and it is dependent on the
successful completion of the quadcopter flight model description. Once completed, we will be able
to simulate virtual flight and thus test the controls software along with our current simple software
test.

2.3 IMPLEMENTATION ISSUES AND CHALLENGES

2.3.1 Quad Software

One of the main challenges of the Quad software design will be in transitioning platforms from XPS
to vivado. This is due to Vivado not supporting the same IP’s as XPS. Additionally the team will
need to create, test and implement the custom IP’s of the past teams. The next major challenge will
be in maintaining a low control loop time while expanding the amount of data being sent to the
ground station.

2.3.2 Controls

The primary challenge in the new controls implementation lies in the technical difficulty of the
physics and mathematics. We will be collaborating with a controls-focused PhD student whose will
be handling the theoretical model computation. This leaves the translation challenges to us:

PAGE 15

accurately and efficiently implementing the precise software and simulation to reflect the specified
controller.

2.3.3 Ground Station

There have been many issues when implementing new features. The ground station was developed
for a single quad of a single type, this has caused some design issues with trying to implement
multiquad support. Another big issue the ground station team has encountered has to deal with
threading on the graphical user interface and blocking operations on the front end. Finally there
are some design challenges working in real time when trying to send data to and from the quad.

2.3.4 Continuous Integration

One of the biggest challenges in continuous integration was designing an interface that would
allow us to test the platform at the system level. The existing virtual quadcopter software did not
simulate flight. We needed to create a reliable flight simulator to be able to test the controls and
controls related quadcopter software.

2.4 STANDARDS

There is not a direct set of standards that is well suited for quadcopter drone software and
hardware development. IEEE publishes some high-power electronics safety standards, but they are
designed for systems significantly larger than ours. There are also pure software standards, but our
project, as seen above, is not purely software. As such, the closest thing we have to a standard to
follow is DO-178B, the aviation software standard created by the United States government. This
still has its share of shortcomings in relation to our project, however. Given the experimental
nature of MicroCART and its remarkably low risk of serious injury upon a significant software
failure (compared to the manned aircraft that the standard was designed for), some of the
requirements should be considerably loosened. For example, DO-178B gives an acceptable
frequency of failure for each level of significance, and even the lowest level of risk is given an
acceptable frequency of one failure per 1000 hours, which is unreasonably (and unnecessarily) strict
given the scope and scale of the project at hand. Nonetheless, the standard sets forward a useful
sequence of steps in which there is a process to work from requirements to code and then to fully
test both for accuracy and completeness.

3 Testing and Implementation

3.1 INTERFACE SPECIFICATIONS

The major interfaces for the MicroCART project involve the ground station and the multiple areas
including the Backend, Frontend, CLI, and GUI. Figure 3-1 shows the communication between the
various areas and the sockets outside of the ground station computer.

PAGE 16

Figure 3-1: Ground Station flow diagram

3.1.1 Ground Station Interface Specifications
The ground station interface consists of two major components including the Backend and
Frontend. The Backend provides a server that the VRPN system and user interfaces connect to via
sockets for communication. This allows the obtaining of position information from the VRPN
system as well as accepting commands from the frontend. Additionally, the backend connects to
the quadcopter also via a socket. The frontend provides methods that handle the interfacing with
the Backend for both the CLI and GUI.

3.1.2 Ground Station GUI Specifications

The Graphical User Interface will have four tabs that allow for starting of the backend, viewing the
control graph, navigation, and real-time graphing. The backend tab both starts the backend and
will also allow for the use of the Command Line Interface directly within the GUI. The controls tab
allows the user to change the constant values within the controls to tune the PID values during
flight. Navigation allows sending of coordinates to the quadcopter and the running of demos.
Lastly, the real-time graphing tab will allow a configurable real-time data transmission between the
quadcopter and GUI to graph during flight.

3.1.3 Ground Station CLI Specifications

The Command Line Interface provides direct access to the commands that the GUI sends for the
user. It does not provide many of the extra features that the GUI provides such as automating
setpoint sending, real-time transmission, and viewing the control graph. This is a more lightweight
interface that still provides the use of all the same commands sent from the GUI.

3.1.4 Ground Station Access Point Specifications

To support multiple quadcopters we plan on creating a wireless access point on the ground station.
This will require a server software such as hostapd and a reprogramming of the wifi on the current
quad. Once implemented we will be able to host multiple quads simultaneously from a single
ground station [2].

3.2 HARDWARE AND SOFTWARE

3.2.1 Automated Unit and Functional Testing
All commits to the Git repository are tested through a suite of continuous integration scripts. These
scripts perform unit tests on the software that runs on the quad and higher level functional tests
that run on the “virtual quad” which interfaces with a set of Unix drivers. The scripts are run

PAGE 17

automatically using the GitLab pipeline integration. We will continue to improve the test coverage
over the existing code, and as more features are added, tests will be added to cover them. The
automated testing flow is shown below in Figure 3-2.

Figure 3-2: Diagram of automated testing

3.2.2 Flight Simulation

The correctness and requirements of the quadcopter software will be tested through the
MicroCART Simulator (MCS) and the help of the simulator event test scripts. Different flight
regimes will be tested and verified whether the quadcopter position and orientation are within a
threshold. In case of an accident, ground contacts are detected and the unsuccessful test is
terminated early. An example of the simulation output is provided in Figure 3-3.

Figure 3-3: Simple quadcopter flight inside MCS

3.2.3 Flight Test

The current implementation of the ground station allows for a list of setpoints to be loaded into the
GUI to allow for autonomous navigation. The quad will automatically relocate to the next point in
the list once it gets within a defined range of the setpoint. We plan to create a list of setpoints that

PAGE 18

will be used to test each new build of the quad software. This will enable us to test edge cases and
to have a flight pattern that will test the more extreme patterns of movement. Another method of
testing is to use the CLI to directly call commands that we are testing. In Figure 3-3 the CLI is
shown in the top left, Backend in the bottom left and the flight is on the right.

Figure 3-4: Flight Test with CLI

3.2.4 System Identification

Eventually, we plan to build custom testing fixtures for use in system identification. The first we
will use is a stand to measure the thrust of a single motor with a prop. It will be connected to a
scale to measure a difference between the gravitational force when stationary and when producing
thrust. The main non-obvious physical feature of this component is its length; it is important to
distance the rotor from the scale to minimize ground effect. Another piece of testing hardware will
be similar, but for measuring torque. The physical setup will be different, but it will still use a
custom-designed hardware connecting a single motor under test to a scale. This system
identification will be used in forming models for both the the simulator (as described above) and
the controls algorithm.

PAGE 19

3.3 PROCESS DIAGRAM

Figure 3-5: Design Process flow diagram, inspired by [3]

The above diagram explains the process we will as a guide to development. To effectively produce
and improve upon the existing system we must first discuss progress and determine what must be
addressed. After determining the problems we must further define them and come up with
solutions for those defined issues. After brainstorming prototyping solutions would be the next
step. Moving forward, those solutions should be tested using the testing method described in
section 3.2. After the correct solutions is determined and confirmed that solution should be
released into our master branch in the repository.

3.4 MODELING AND SIMULATION

To test the controls, we have a Simulink model that simulates three things: the quad control logic,
the actuation of the quad given the output from the controls (i.e. physics), and the sensor and
communication system. These three components tied together in a loop allow us to easily run

PAGE 20

initial tests on modifications to (or new implementations of) the controls algorithm without the
physical risks of running the untested model on the quadcopter itself. This model is based off of [1]
and takes into account as many factors as possible (for example, the Sensors component passes the
data and simulated noise through quantization and time delay), but it is still not a guaranteed
proof of functionality.

Software-In-Loop and Processor-In-Loop simulation will be available through MicroCART
Simulator (MCS). MCS backend runs on a flight dynamics simulator called JSBSim which provides
environment simulation for aerial vehicles. The controls software is connected to MCS using a TCP
socket and the output of the controls software is connected into the simulator to form a closed
loop. By running different scripted scenarios, we can simulate different flight regimes and test our
controls and the overall correctness of our quadcopter software.

3.5 RESULTS

Much of the semester to this point has been to the end of producing documentation, investigating
the existing system implementation, planning future developments, and initializing test structures.
As such, we have no results to report up to this point (October 15, 2017).

We will update this section of the document upon the completion of a meaningful amount of
testing and collection of results.

4 Closing Material

4.1 CONCLUSION

Our MicroCART team has been steadily working to produce a more stable flying quadcopter that
can be easily demoed to other students and faculty. We have vastly improved documentation for
the entire MicroCART project that has been passed on to us from the previous team. With
complete documentation for the current system, each sub team of MicroCART will be able to work
towards their goals and allow the sub teams to better understand what how their portion interacts
within the complete system. The quadcopter software sub team will continue to work towards their
goals of improving the flight data communications, integrating GPS navigation for more precise
flight, utilize the second ARM core on our board that is currently unused, and also add different
flight modes to the quadcopter that will allow beginner and advanced users to operate the
quadcopter. The ground station team is looking to improve the backend of the system to allow for
the real-time flight data transmission. They will also redesign the GUI of the system and develop a
new tool to analyze the flight data. Controls team is focused on tuning the PID values to further
stabilize the quadcopter flight. Controls will also work on developing an advanced demo such as
having the quadcopter do a flip. The continuous integration team will work on ensuring that all
code committed to the Git repository is functional. They are also responsible for creating the tests
that will determine the functional and nonfunctional requirements for new features. With all of the
sub teams working on their portion of the project and focusing on their main goals, we should have
no issues meeting the requests of our client.

PAGE 21

4.2 REFERENCES

[1] M. Rich, “Model Development, system identification, and control of a quadrotor helicopter” in
Iowa State University Digital Repository, 2012

[2] Wehr, David. “ESP8266 Wifi Latency Testing.” 17 Sept. 2016,
https://docs.google.com/document/d/1VU99wMgkqK2EgbNLdqrdhvj9iikfqk2gtUYQ367K5-Q/e
dit#heading=h.s0og8emj18jx

[3] Plattner, Hasso. “An Introduction to Design Thinking PROCESS GUIDE.” in Institute of Design
at Stanford
https://dschool-old.stanford.edu/sandbox/groups/designresources/wiki/36873/attachments/74b
3d/ModeGuideBOOTCAMP2010L.pdf

4.3 APPENDIX

Figure 4-1: Block diagram of system hardware and software

PAGE 22

