sdmay18-17 MicroCART

MicroCART: Microprocessor-Controlled Aerial Robotics Team

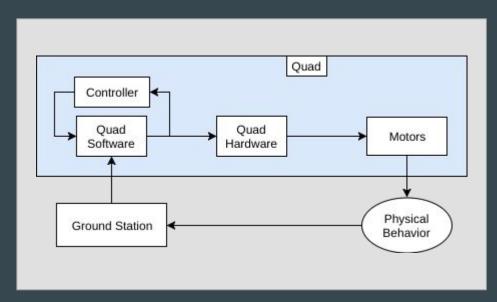
Meet the Team

Team Members: Kyle Trost, Tyler Imboden, Peter Thedens, Jakub Hladik, Dane Larson, Matthew Kelly, Austin Rohlfing, Blake Pries

> Clients and Advisors: Dr. Phillip Jones, Dr. Nicola Elia ••• Website: <u>http://sdmay18-17.sd.ece.iastate.edu/</u>

Problem Statement

- Controls research platform
 - Modular
 - Robust
 - Low-Latency
- Focus on infrastructure
 - Controls is one small portion of project
- Common real-world application



Keywords and Definitions

- Quad/Quadcopter
 - Quadrotor helicopter
- Camera tracking system
 - Set of 12 infrared Opti-track cameras
- Ground station
 - Application running on a host computer that communicates with quad and camera tracking system via Wi-Fi
- Continuous integration
 - Automated process of running tests on every commit to the repository
- GUI
 - Generated user interface

Primary Areas of Development

- Quadcopter Software
- Ground Station
- Controls
- Testing and Virtual Quad

Functional Requirements

- Quad Software
 - Stability around a setpoint
 - Smooth autonomous movement
 - Real-time data logging
- Ground Station
 - Multiple real-time quad support
 - Real-time data logging and visualization
 - Support of new demos
 - Safety Features
- Controls
 - Enable autonomous flight with controls model
- Testing
 - Automated test suite
- MicroCART sdmay18-17

Non-Functional Requirements

- Documentation
 - Working with a continued repository
- Performance
- Testing

Technical Constraints and Considerations

• Camera tracking system

- Screened area boundaries
- Decreasing accuracy when approaching boundaries
- Battery endurance
 - 10-15 minute flight time

Potential Risks & Mitigation

- Safety hazards
 - Spinning rotors
 - Potentially unstable quad
 - LiPo battery charging
- Risk to Quadcopter
 - Testing controls can cause unknown behavior
 - Loss of position information
- Precautions
 - Quadcopter tether
 - Simulation testing
 - Camera safe zones
 - Battery bags
 - $\circ \quad \ \ {\rm No\ unattended\ batteries}$

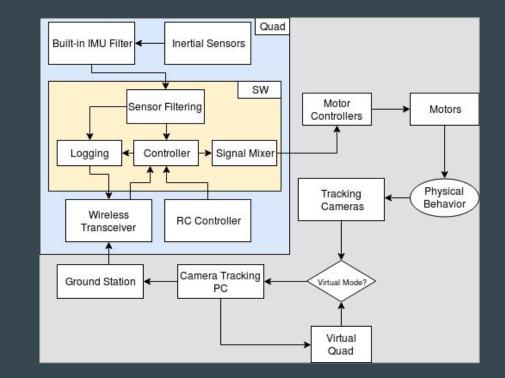
Quad with tether attached

Market Survey

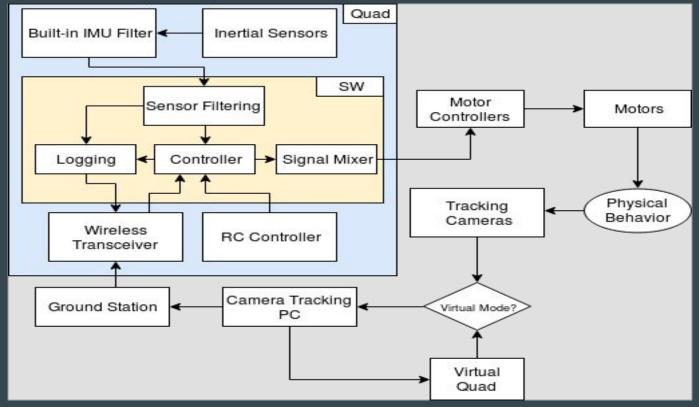
- Georgia Tech: DURIP, others
 - Remote-access testing
- University of Maryland: TERP
 - LQR controller
 - MATLAB implementation
- Stanford: STARMAC
 - Basic controls
 - Research focused on collision avoidance
- M.I.T.: RAVEN
 - Multiple vehicle types
- Iowa State: MicroCART
 - Modular controls implementation

Stanford STARMAC platform from: http://ai.stanford.edu/~gabeh/research.htn

Resource/Cost Estimate


Part	Cost
Frame & Speed Controllers	\$270
Zybo Board	\$189
Lidar Sensor	\$134
Optical Flow Sensor	\$120
Radio Receiver	\$40
Remote Controller	\$110
Batteries	\$35

Project Deliverables

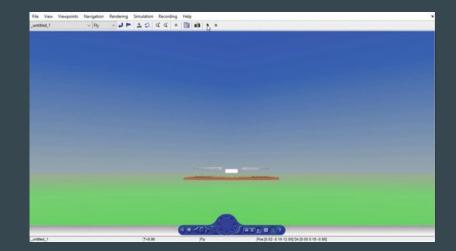

- Improving existing system
 - Documentation
- Adding new features
 - Multi-vehicle navigation
 - Manual "assisted" mode
 - Flight simulation
 - Linearized control model
 - Flashy demo

Hardware and Software Platform

- Quad hardware
 - FPGA
- Quad software and controls
 - o Wi-Fi
 - PID controller
- Ground station
 - Linux workstation
 - Camera tracking system
- Testing
 - Continuous integration server
 - Virtual quadcopter simulator

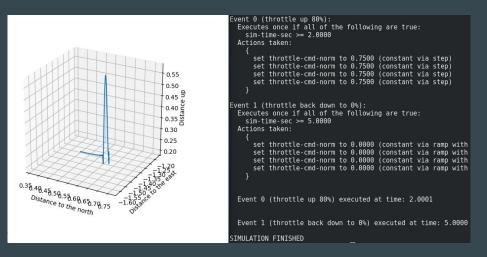
Functional Decomposition

Detailed Design of Ground Station


- Add multiple vehicle support
- Add multiple vehicle type support
- Additional features to GUI
- Data analysis tool
- Documentation update

Detailed Design of Quad Software

- Manual "assisted" mode
 - Take away direct input to output connection
 - Use input to modify PID setpoints
 - Makes quad easier to fly because the PID will stabilize
- Real-time data logging
 - Move communication to second core
- Update tool flow

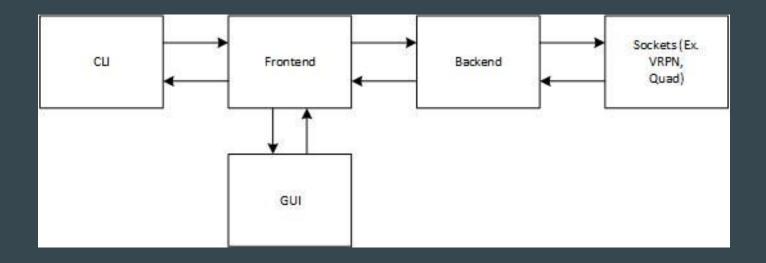

Detailed Design of Controls

- Integrated simulation
 - Verify future changes
 - \circ Interact with ground station
- Linear Controls Model
 - Collaborate with PhD student Matt Cauwels
 - \circ ~ Verify model with simulation
 - \circ ~ Refine model with physical flights

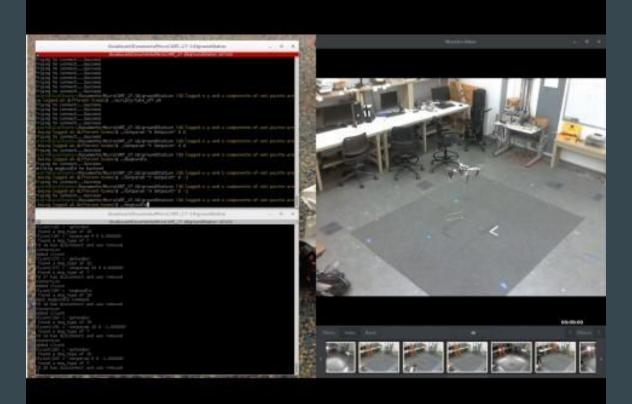
Detailed Design of Testing Tools

- Flight simulation
 - Design a virtual quadcopter system and flight simulator
- Use robust third-party test framework

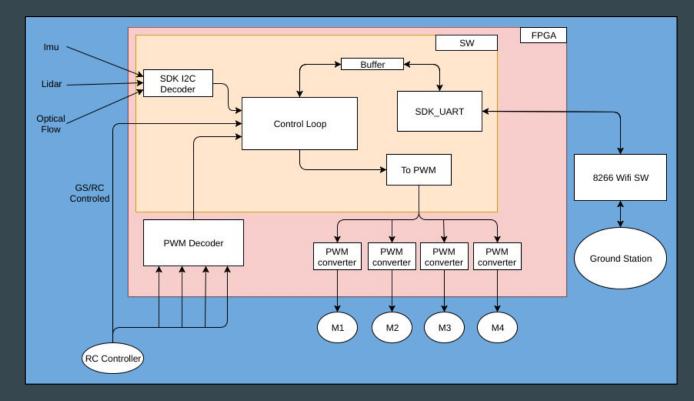
Test Plan


- Software
- Controls algorithm
- System

Current Project Status


- Completed
 - Migrating unit tests to a more reliable testing framework
 - Overhaul of documentation
- In progress
 - Multiple vehicle ground station
 - Updating hardware specification tool to Vivado
 - Integrated flight simulator
- Future
 - Demonstration of new features
 - Real time logging / graphing
 - Manual assist mode

Ground Station Components


Message Bundle Testing Video

Work division details

Task	Assignee	Man-hours
Improve documentation	All	80
Understand existing code	All	40
Code improvements	All	30
Brainstorm Ideas for demo	All	14
Decide on final demo	All	8
Stabilize using lidar	Austin & Blake	60
Finish POC of virtual quad	Peter & Jakub	80
Fix GUI performance	Dane & Matt	120
Switch ISE to Vivado	Kyle & Tyler	20
Expand controls capabilities	Austin & Blake	180
Deploy additional testing	Peter & Jakub	160
Improve optical flow performance	Kyle & Tyler	140
Improve Virtual quad performance on Linux	Dane & Matt	100
Test demos	All	40
Get "Hard" numbers on performance	All	20
Presentation practice	All	16

Quad Software Block Diagram

