MicroCART (sdmay18-17)

MicroCART: Microprocessor-Controlled Aerial Robotics Team
Meet the Team

Team Members: Kyle Trost, Tyler Imboden, Peter Thedens, Jakub Hladik, Dane Larson, Matthew Kelly, Austin Rohlfing, Blake Pries

Clients and Advisors: Dr. Phillip Jones, Dr. Nicola Elia

Website: http://sdmay18-17.sd.ece.iastate.edu/
Problem Statement

- Controls research platform
 - Modular
 - Robust
 - Low-Latency
- Focus on infrastructure
 - Controls is one small portion of project
- Common real-world application
Keywords and Definitions

● **Quad/Quadcopter**
 ○ Quadrotor helicopter

● **FPGA**
 ○ Field-programmable gate array

● **Ground station**
 ○ Application running on a host computer
 ○ Communicates over Wi-Fi to quad and camera tracking system

● **PID and LQR controllers**
 ○ Proportional–integral–derivative
 ○ Linear-quadratic regulator

● **Camera System**
 ○ 12 camera IR tracking system
Primary Areas of Development

- Quadcopter Platform
- Ground Station
- Controls
- Testing and Simulation
Functional Requirements

● Quad Platform
 ○ Ground station communication
 ○ Extract sensor data from sensors
 ○ Arbitrate which control graph to use

● Ground Station
 ○ Multiple quad support
 ○ Support of demos
 ○ Option for AP and Client on ground station PC

● Controls
 ○ Enable autonomous flight with controls model

● Testing and Simulation
 ○ Automated test suite
 ○ Sanity check of the quadcopter software through simulation
Non-Functional Requirements

● Documentation
 ○ Working with a continued repository
 ○ Document new and existing progress

● Performance

● Testing
Technical Constraints and Considerations

- Camera tracking system
 - Screened area boundaries
 - Decreasing accuracy when approaching boundaries
- Battery endurance
 - 10-15 minute flight time
- WiFi Latency
Potential Risks & Mitigation

● Safety hazards
 ○ Spinning rotors
 ○ Potentially unstable quad
 ○ LiPo battery charging

● Risk to Quadcopter
 ○ Testing controls can cause unknown behavior
 ○ Loss of position information

● Precautions
 ○ Quadcopter tether
 ○ Simulation testing
 ○ Camera safe zones
 ○ Battery bags
 ○ No unattended batteries
Market Survey

- Georgia Tech: DURIP, others
 - Remote-access testing
- University of Maryland: TERP
 - LQR controller
 - MATLAB implementation
- Stanford: STARMAC
 - Basic controls
 - Research focused on collision avoidance
- M.I.T.: RAVEN
 - Multiple vehicle types
- Iowa State: MicroCART
 - Modular controls implementation

Stanford STARMAC platform from: http://ai.stanford.edu/~gabeh/research.html
Project Deliverables

● Improving existing system
 ○ Documentation
 ○ Upgrade testing framework
 ○ Second Quad
 ○ Vivado

● New features added
 ○ Multi-vehicle navigation
 ○ Manual “assisted” mode
 ○ LQR controller
 ○ Additional demos
 ○ Flight simulation
Hardware and Software Platform

- **Quad hardware**
 - FPGA

- **Quad software and controls**
 - Wi-Fi
 - PID or LQR controller

- **Ground station**
 - Linux workstation
 - Camera system

- **Testing**
 - Continuous integration server
 - Quadcopter simulator
Functional Decomposition
Design and Implementation
2nd Quad

- **Challenges:**
 - Accelerometer biasing/placement
 - Radio controller settings
 - ESCs/DJI Documentation

- **New Versions of Components**
 - Lidar Lite 2 vs Lidar Lite 3
 - Controller / Radio Receiver

- **Improvements over 1st Quad**
 - Wiring
 - Component Mounting
Resource/Cost Estimate

<table>
<thead>
<tr>
<th>Part</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame & Speed Controllers</td>
<td>$270</td>
</tr>
<tr>
<td>Zybo Board</td>
<td>$189</td>
</tr>
<tr>
<td>Lidar Sensor</td>
<td>$134</td>
</tr>
<tr>
<td>Optical Flow Sensor</td>
<td>$120</td>
</tr>
<tr>
<td>Radio Receiver</td>
<td>$40</td>
</tr>
<tr>
<td>Remote Controller</td>
<td>$110</td>
</tr>
<tr>
<td>Batteries</td>
<td>$35</td>
</tr>
</tbody>
</table>
Vivado Upgrade

● Major Strides Upgrade from XPS to Vivado
 ○ More stable
 ○ Newer software
 ○ Faster FPGA hardware development

● Ran into many compatibility issues

● Results
 ○ Was flying, but unstable
 ○ Now building but failing in runtime
 ○ Findings well documented
 ○ Good base for future members
Ground Station

- Added multiple vehicle support
 - Quads, Crazyflies, and Roombas
- Ground Station access point
- Additional features to GUI
- Manual “assisted” mode
 - User input with a controller to modify PID setpoints
User Interface (Ground Station GUI)
Detailed Design of Controls

- **LQR Controller Design**
 - Generic system linearization
 - Testing with existing Simulink model
 - Porting to quad-side C

- **Weight Selection**
 - Multiple weighting patterns
 - Constrained minimization with MATLAB

- Design based on past research [1]

- Goal: implement fundamentals for future
 - State-feedback control for quad

![Graph showing setpoints and actual position with diagonal weighting and LQR setpoint tracking.](image-url)
Quad Simulator

- Uses JSBSim
- Visualization through FlightGear
- Data logging and data input over sockets
 - Plug-and-play control algorithm over sockets
- Joystick integration with real-time simulation
- Automated testing through scenario scripting and event detection
Test Plan

● Software
 ○ Unit and integration tests
 ○ Upgrade testing framework [5]

● Controls algorithm
 ○ Simulink

● System
 ○ Flight simulation
 ○ Flight tests

```shell
make -C src/computation_graph test
make[1]: Entering directory `/builds/danc/MicroCART/quad/src/computation_graph'
gcc -g -o run_tests test/computation_graph.c obj/computation_graph.o -I..../inc -L..../lib -lunity -lm -lgraph_blocks -DUNITY_INCLUDE_CONF
IG_H
./run_tests
# test/computation_graph.c:244:test_adding_2_numbers:PASS
```
Value Added

● Improving existing system
 ○ Documentation
 ○ Upgrade testing framework
 ○ Second Quad
 ○ Vivado

● Adding new features
 ○ Multi-vehicle navigation
 ○ Manual “assisted” mode
 ○ Flight simulation
 ○ LQR controller
 ○ Additional demos

Future Work

● Communication between Quads
● Linux Running on second core (OpenCV?)
● Strong real-time logging framework that is configurable for use in research
● More complete usage of testing framework
● Integrate flight simulation into continuous integration
Questions
References

Backup Slides
Ground Station
Latency Tests

- Sends 10,000 Packets
- TX and RX tied on the ESP Chip
- When running with multiple Clients tests were run on multiple processes
- AP is the old configuration
Controls Media

PID
Modification of Control Graph Implementation